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Abstract - Artificial intelligence system architects must choose between single-agent and multi-agent architectural patterns 

because this selection impacts performance, resource allocation, and operational efficiency. Despite the widespread adoption 

of agent-based systems across different domains, no standardized framework would help guide the essential architectural choice 

between single-agent and multi-agent systems. This paper presents a robust, quantitative decision framework that measures and 

organizes the evaluation between single-agent and multi-agent architectures. The research introduces noble evaluation tools 

and assessment procedures that examine task features, resource limitations, performance benchmarks and domain requirements. 

The proposed framework demonstrates its effectiveness through case studies in multiple application domains to guide optimal 

agent architecture selection. The research offers practitioners and researchers a systematic approach to choose the optimal 

architecture to enhance system performance for specific use cases while maximizing resource utilization. 

Keywords - Multi-agent systems, Artificial intelligence, Decision framework, System architecture, Agent coordination, Task 

decomposition.

1. Introduction 
The increasing need for artificial intelligence systems 

demands agent architectures because these systems perform 

complex operations across multiple fields. One of the core 

decision points for designing AI systems involves selecting 

between a single centralized agent with extensive capabilities 

and employing multiple specialized agents that operate 

independently. The choice between these approaches 

determines system execution efficiency while affecting 

resource requirements, system development complexity and 

operational effectiveness costs. Through their foundational 

work, Wooldridge and Jennings [20] did the basic analysis of 

agent-based system designs and explored the different 

architectures. 

Both architectural approaches demonstrate success in 

different applications, but there is a gap in the standardized 

methods used to determine optimal solutions for specific 

scenarios. Organizations, together with researchers, typically 

make a decision through their institutional knowledge, 

developer preferences, and ad hoc evaluations instead of a 

systematic evaluation of problem characteristics and 

requirements. 

This paper solves the existing gap by presenting a 

systematic decision framework that standardizes the 

evaluation between single-agent and multi-agent 

architectures, incorporating the following: 

1. A complete set of evaluation metrics that measure 

essential factors influencing architectural decisions 

2. Mathematical formulations that enable objective 

comparison between architectural approaches 

3. Decision pathways that guide practitioners through the 

selection process 

4. An implementation model for applying the framework to 

real-world applications 

The significance of this research emerges from its 

capability to enhance AI system design through proper 

alignment of architectural choices with task complexity, 

resource availability and performance requirements. The 

structured decision process proposed in this paper will enable 

architects to make consistent architectural choices throughout 

all use cases across domains. 

2. Related Work 
2.1. Agent Architectures and Taxonomies  

Research on Agent architectures has been extensive, and 

multiple taxonomies have been developed to classify the 

different approaches. Russell and Norvig [1] introduced a 

basic agent classification system that depends on the agent’s 

internal knowledge representation and reasoning abilities. 

Wooldridge [2] developed an expanded taxonomy, including 
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social capabilities,  which separated autonomous agents from 

multi-agent systems. 

Jennings et al.  [3] have extended the research on 

organizational intricacies in multi-agent systems and proposed 

agent interaction and collaboration patterns. Current 

taxonomies mostly describe existing architectural features but 

do not guide AI architects in selecting suitable architecture for 

a particular use case. 

2.2. Multi-Agent Systems 

Research studies on multi-agent systems have analyzed 

distributed intelligence, which includes coordination 

mechanisms [4], communication protocols [5] and task 

allocation strategies [6]. Through their research, Tambe [7] 

and Stone [8] demonstrate how multi-agent systems deliver 

better results in complex domains such as disaster response 

and autonomous vehicles. 

Multiple studies have established the benefits of multi-

agent systems, owing to their ability to enhance robustness 

through redundancy [9],  increased scalability [10] and the 

ability to bring together diverse expertise [11]. However, these 

systems also have higher coordination requirements and 

potential communication issues, according to Lesser [12]. 

2.3. Decision Frameworks in AI System Design  

Several frameworks guide AI system design, including 

algorithm selection [13], data pipeline construction [14] and 

model deployment [15]. The evaluation methodologies 

proposed by Hernández-Orallo [16] provide key performance 

metrics but do not provide solutions for architectural choices 

regarding agent selection. 

Some research exists on comparing single versus multi-

agent systems in particular domains, such as  Kitano’s [17] 

robotic system evaluation and Wellman’s  [18] market-based 

system analysis. These domain-specific analyses fail to create 

a domain-agnostic structured decision framework that applies 

to multiple domains. 

2.3.1. Comparative Analysis with The Proposed Approach 

The existing literature lacks a structured, quantitative 

Framework with defined metrics to systematically guide the 

architectural choice between single-agent and multi-agent 

systems.
 

Table 1. Compares the proposed framework with existing methods across key dimensions 

Approach Quantitative Domain-Agnostic 
Empirically 

Implementation 

Implementation 

Factors 

Expert Heuristics [21] 55 ✓ Partial Partial 

Checklist Methods [22] Partial ✓ 55 ✓ 

Domain-Specific [23,24] ✓ 55 ✓ Partial 

Game-Theoretic [25,26] ✓ ✓ 55 55 

The proposed framework ✓ ✓ ✓ ✓ 

This gap arises from the absence of a methodical 

evaluation model that considers task complexity, resource 

distribution, and system constraints while integrating practical 

implementation considerations. A Summary of these critical 

evaluation dimensions is presented in Table 1. 

2.4. Comparison with Existing Methods 

This paper examines existing approaches that deal with 

selecting appropriate agent architectures: 

 

2.4.1. Heuristic-Based Approaches 

The traditional process of selecting agent architecture 

depends primarily on heuristics together with expert 

judgment. Decker et al. [21] presented qualitative guidelines 

based on task characteristics, which recommend multi-agent 

solutions for decomposable problems yet single-agent 

solutions for tasks with tight coupling. The guidelines provide 

useful direction, yet they do not offer quantitative methods or 

results that can be replicated. 

The checklist method developed by Shen et al. [22]  helps 

determine agent architecture through scoring systems that 

evaluate decomposability and coordination requirements. The 

proposed framework in this paper adds to the existing 

approaches through mathematical formulations of each 

dimension, which are combined into a single unified decision 

metric. 

2.4.2. Domain-Specific Frameworks 

 Specialized frameworks for architecture selection exist 

within multiple specific domains. Doriya et al. [23] 

established the MRAS framework to choose between 

centralized and distributed control architectures by evaluating 

environmental complexity and task redundancy in robotics. 

Tong et al. [24] created selection criteria for network 

scalability and management requirements. 

The proposed framework takes the best elements from 

domain-specific approaches to create a universal, domain-

agnostic methodology that works across all industries and 

application domains. 

2.4.3. Economic and Game-Theoretic Models  

Some researchers have analyzed architecture selection 

problems using economic and game-theoretic frameworks. 

Shoham and Leyton-Brown [25] treated the decision as a 
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utility maximization problem, and Kraus [26] used coalition 

formation theory to conclude optimal agent groupings. 

Although these methods offer strong theoretical 

foundations, they often rely on complex utility functions that 

can be challenging to define in real-world applications. The 

proposed framework addresses this gap by translating 

theoretical principles into practical applications with 

measurable metrics, making implementation more accessible 

and effective. 

3. Multi-Agent Decision Framework 
This paper introduces a framework that systematically 

evaluates whether a single-agent or multi-agent architecture 

best suits a specific system or application, offering a structured 

methodology for informed decision-making.  

The framework consists of four main components: (1) task 

evaluation, (2) system constraint analysis, (3) performance 

requirement mapping, and (4) decision synthesis. 

 

3.1. Framework Overview 

The framework lays a systematic process, as illustrated in 

Figure 1. The decision flowchart guides practitioners through 

a series of evaluations to determine the optimal agent 

architecture for their specific needs: 

1. Task Evaluation Phase: Analyze the inherent 

complexities and characteristics of the task, including 

complexity, decomposability, and domain knowledge 

requirements. 

2. System Constraint Analysis: Evaluate external 

constraints such as computational resources, time 

constraints, and existing infrastructure. 

3. Performance Requirement Mapping: Identify critical 

performance requirements, including accuracy, 

robustness, and adaptability. 

4. Decision Synthesis: Integrate task characteristics, 

constraints, and requirements to provide a quantitative 

recommendation. 

 

3.2. Comparative Analysis Process 

The comparative analysis process, depicted in Figure 2, 

guides practitioners through a structured decision pathway 

with quantitative thresholds: 

1. Task Complexity Assessment: Evaluate whether the task 

exhibits high complexity (TCI > 0.7), indicating potential 

benefit from distributed processing. 

2. Task Decomposability Evaluation: Determine if the task 

can be effectively decomposed into independent subtasks 

(TDS > 0.6) 

3. Knowledge Domain Diversity Analysis: Assess whether 

the task requires diverse knowledge domains or specialized 

expertise (KDD > 0.5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Decision flowchart for agent architecture selection, showing evaluation criteria and comparative benefits of single versus multi-agent 

approaches 

Task Evaluation Phase  
Analyze complexity, decomposability, and domain specificity  

Input: Task requirements and constraints 

Single Agent Solution 
•Low task complexity  

•Limited decomposability  

•Unified domain knowledge  
•Low coordination overhead  

•Resource constraints 

Multi-Agent Solution •High task 

complexity 

•Easily decomposable tasks 
•Diverse domain expertise 

•Parallel processing benefits 
•Redundancy requirements 

Performance Evaluation Metrics 

Multi-Agent Decision Framework 
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Point 
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Fig. 2 Multi-agent System Comparative Analysis Process illustrating the decision pathway for evaluating architectural alternatives 

 

4. Coordination Overhead Assessment: Calculate potential 

coordination costs associated with a multi-agent approach 

(COR) 

5. Decision Score Calculation: Integrate all metrics into a 

comprehensive D-Score using the weighted formula 

incorporating RUE, EDC, and IDQ alongside the 

previously assessed factors. 

 

The final decision between single-agent and multi-agent 

architectures is determined by D-Score, with a positive score 

favouring multi-agent systems and a negative score favouring 

single-agent implementations. The score is an indication of the 

confidence level of the recommendation. Table 2 illustrates 

how each quantitative metric directly influences specific 

decision points in the framework. 

4. Quantitative Decision Metrics  
To enable objective evaluation, this paper proposes a set 

of quantitative metrics that formalize the comparison between 

single-agent and multi-agent architectures. 

 
4.1. Task Assessment Metrics 

4.1.1. Task Complexity Index (TCI) 

The Task Complexity Index quantifies the inherent 

complexity of a task across multiple dimensions: 

 

𝑇𝐶𝐼 =  ∑  𝑛
𝑖=1 𝑤𝑖 . 𝐶𝑖                                   (1) 

Where: 

• 𝑛 = number of complexity dimensions 

• 𝑤𝑖  = weight of dimension i 

•  𝐶𝑖= complexity score of dimension i (scaled 0-1) 
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Complexity dimensions include computational intensity, 

state space size, temporal dependencies, and uncertainty 

levels. Tasks with higher TCI values (typically above 0.7) 

generally benefit from multi-agent approaches due to their 

ability to distribute complex processing. This threshold was 

established through statistical analysis of the validation data, 

which indicated a significant inflection point at 0.7, above 

which tasks consistently demonstrated better performance 

with distributed processing. 

 

4.1.2. Task Decomposability Score (TDS) 

The Task Decomposability Score measures how 

effectively a task can be divided into independent subtasks: 

𝑇𝐷𝑆 =  
∑𝑚

𝑖=1  𝐼𝑖

∑𝑚
𝑖=1  (𝐼𝑖 + 𝐷𝑖)

                     (2) 

 

Where: 

•  𝑚 = number of subtasks 

•  𝐼𝑖  = independence score of subtask 𝑖 

•  𝐷𝑖  = dependency score of subtask  

 

A higher TDS value (above 0.6) indicates tasks that can 

be effectively distributed across multiple agents with minimal 

coordination overhead. 

 
Table 2. Illustrates how each metric directly influences specific decision points in the framework. 

Metrics Decision Threshold Framework Component 

Task Complexity Index (TCI) 0.7 The first decision node in the flowchart 

Task Decomposability Score (TDS) TDS > 0.6 The first decision node in the flowchart 

Knowledge Domain Diversity (KDD) KDD > 0.5 The third decision node in the flowchart 

Coordination Overhead Ratio (COR) COR < 0.3 Fourth decision consideration 

Resource Utilization Efficiency (RUE) RUE > 0.7 Integrated into D-Score calculation 

Error Distribution Coefficient (EDC) Higher is better System reliability assessment 

Integrated Decision Quality (IDQ) Domain-specific Final performance evaluation 

The 0.6 threshold represents the empirical point at which 

the benefits of task distribution begin to outweigh the inherent 

coordination costs in the benchmark studies across various 

domains. This approach builds on the task decomposition 

strategies proposed by Durfee and Lesser [19], who 

established the theoretical foundations for effective task 

partitioning in multi-agent systems. 

 

4.1.3 Knowledge Domain Diversity (KDD)  

The Knowledge Domain Diversity metric quantifies the 

heterogeneity of expertise required for a task: 

 

𝐾𝐷𝐷 =  1 −  
1

𝑘(𝑘 − 1)
 ∑𝑘

𝑖=1 ∑𝑘
𝑗=1,𝑗≠𝑖 𝑆𝑖𝑚(𝐷𝑖 , 𝐷𝑗)    (3) 

 

Where: 

● 𝑘 =  number of knowledge domains required   

● 𝑆𝑖𝑚(𝐷𝑖 , 𝐷𝑗) = similarity between domains 𝑖 and 𝑗 (0 

to 1) 

 

The similarity function 𝑆𝑖𝑚(𝐷𝑖, 𝐷𝑗 ) is calculated 

through a combination of ontological distance in a domain 

hierarchy and empirical co-occurrence statistics. Specifically: 

 

𝑆𝑖𝑚(𝐷𝑖 , 𝐷𝑗)  =  𝜆 . 𝑆𝑖𝑚𝑂𝑛𝑡(𝐷𝑖 , 𝐷𝑗) 

                                   +(1 −  𝜆). 𝑆𝑖𝑚𝐶𝑜𝑜𝑐(𝐷𝑖 , 𝐷𝑗)     (4) 

 

Where 𝑆𝑖𝑚𝑂𝑛𝑡 represents normalized ontological 

similarity in a knowledge domain taxonomy, 𝑆𝑖𝑚𝐶𝑜𝑜𝑐 

represents normalized co-occurrence of domains in historical 

systems, and 𝜆 (typically 0.7) weights these factors. Tasks 

with high KDD values (above 0.5) benefit from multi-agent 

approaches that can incorporate specialized agents with 

diverse expertise. This threshold was determined through 

comparative analysis of specialist vs. generalist agent 

performance in heterogeneous knowledge tasks, with 0.5 

marking the point where specialization benefits became 

statistically significant (p <0.05, two-tailed paired t-test, n = 

42 system pairs). The statistical analysis was conducted using 

the following test parameters: significance level α = 0.05, 

statistical power of 0.87, and mean performance differential of 

18.3% (95% CI [14.1%, 22.5%]) between specialist and 

generalist implementations at KDD= 0.5. A sensitivity 

analysis across varying KDD values (0.3-0.7 in 0.05 

increments) confirmed the threshold’s robustness, with non-

significant performance advantages below 0.45 and consistent 

significant advantages above 0.5. 

 

The system pairs in this analysis formed the foundation 

for the empirical validation study conducted later, ensuring 

consistency between threshold determination and framework 

validation. The analysis compared performance differentials 

using normalized composite scores across heterogeneous 

knowledge tasks with varying KDD levels. 

 

4.2. System Efficiency Metrics 

4.2.1. Coordination Overhead Ratio (COR) 

The Coordination Overhead Ratio quantifies the 

proportion of resources dedicated to agent coordination rather 

than task execution: 

𝐶𝑂𝑅 =  
𝑇𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛 

𝑇𝑇𝑜𝑡𝑎𝑙
                                      (5) 
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Where: 

● 𝑇𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛= time spent on agent coordination 

●  𝑇𝑡𝑜𝑡𝑎𝑙= total execution time 

 

Higher COR values (above 0.3) indicate significant 

coordination costs that may outweigh the benefits of a multi-

agent approach. This aligns with the decision threshold of 

COR < 0.3 in this framework’s comparative analysis process, 

above which single-agent architectures become increasingly 

valuable and favourable. 

 

4.2.2. Resource Utilization Efficiency (RUE)  

The Resource Utilization Efficiency metric evaluates how 

effectively system resources are utilized across agents: 

                     𝑅𝑈𝐸 =  
∑𝑎

𝑖=1 𝑅𝑖.𝑈𝑖

∑𝑎
𝑖=1 𝑅𝑖

                 (6) 

Where: 

● 𝑎 = number of agents 

● 𝑅𝑖 = resources allocated to agent 𝑖 
● 𝑈𝑖 = utilization rate of agent 𝑖 (0-1) 

 

Multi-agent systems should maintain high RUE values 

(above 0.7) to justify the distributed approach. The RUE 

metric has an important interrelationship with the COR metric, 

as coordination overhead directly impacts resource utilization. 

The empirical analysis found that when COR > 0.3 and RUE 

< 0.7, multi-agent systems consistently underperform single-

agent alternatives in terms of overall efficiency.  

 

However, high RUE values (> 0.8) can sometimes offset 

moderate coordination overhead (COR ≈ 0.3-0.4), particularly 

in systems where processing can be efficiently parallelized. 

 

4.3. Reliability and Performance Metrics 

4.3.1. Error Distribution Coefficient (EDC) 

The Error Distribution Coefficient measures how errors 

are distributed across a multi-agent system: 

 

𝐸𝐷𝐶 =  1 −  
𝜎𝑒

𝜇𝑒
                           (7) 

Where: 

● 𝜎𝑒 = standard deviation of errors across agents 

● 𝜇
𝑒
 = mean error rate 

 

Higher EDC values indicate a more uniform error 

distribution, suggesting better fault isolation in multi-agent 

systems. Based on this framework’s empirical validation, 

EDC values above 0.65 typically indicate sufficient fault 

isolation capabilities to benefit from a multi-agent approach.  

 

In contrast, values below 0.4 suggest vulnerability to 

cascading failures that might favor a more centralized 

architecture. The intermediate zone (0.4 ≤ EDC ≤ 0.65) 

represents a gradient where other factors should be given 

additional weightage in the architectural decision, particularly 

system criticality and reliability requirements. 

4.3.2. Integrated Decision Quality (IDQ) 

The Integrated Decision Quality metric combines 

accuracy, speed, and robustness: 

 

𝐼𝐷𝑄 =  𝛼. 𝐴 +  𝛽. 𝑆 +  𝛾. 𝑅                        (8) 

Where: 

● 𝐴 = accuracy score 

● 𝑆 = speed score 

● 𝑅 = robustness score 

● 𝛼, 𝛽, 𝛾 = weighting parameters (sum to 1) 

 

This metric directly compares overall performance 

quality between single and multi-agent implementations. 

 

4.3.3. Reliability Integration in Decision Framework  

While the Error Distribution Coefficient (EDC) captures 

system reliability aspects in metrics, reliability considerations 

should be explicitly evaluated during the framework 

application process. When analyzing systems with high 

operational criticality or fault intolerance, this paper 

recommends: 

1. Increasing the weight of EDC in the D-score calculation 

by 5-10% 

2. Applying a reliability threshold (EDC > 0.65) as a 

prerequisite for multi-agent recommendations in critical 

systems 

3. Evaluating failure mode effects through additional 

scenario analysis 

This ensures that fault tolerance capabilities are properly 

prioritized in domains where system reliability is paramount. 

For example, applying an EDC weight increase of 7% to the 

Financial Fraud Detection case would adjust the D-score 

calculation as follows: 

𝐷𝑠𝑐𝑜𝑟𝑒
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

 = 0.25 × 0.82 + 0.20 × 0.78 + 0.15 × 0.65 − 0.15 

× 0.25 + 0.10 × 0.85 + 0.05 × 0.72 + 0.10 × 0.68 = 0.610 

 

𝐷𝑠𝑐𝑜𝑟𝑒
𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

 = 0.25 × 0.82 + 0.20 × 0.78 + 0.15 × 0.65 − 0.15 

× 0.25 + 0.10 × 0.85 + 0.12 × 0.72 + 0.03 × 0.68 = 0.613  

This 7% shift from IDQ to EDC increases the decision 

score by approximately 0.003 (0.5%), reinforcing the multi-

agent recommendation while prioritizing fault isolation 

capabilities in this financially critical system. 

4.4. Comprehensive Decision Formula  

This proposed approach integrates these metrics into a 

comprehensive decision score: 

 

Dscore = ω1 · T CI + ω2 · T DS + ω3 · KDD −  

ω4 · COR  + ω5 · RUE + ω6 · EDC + ω7·IDQ        (9) 

Where: 

● 𝜔𝑖 are weighting parameters based on the application 

domain, all defined as positive values 
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● Note that COR is explicitly subtracted as higher 

values negatively impact multi-agent viability. 

● Positive 𝐷𝑠𝑐𝑜𝑟𝑒  favors multi-agent systems 

● Negative 𝐷𝑠𝑐𝑜𝑟𝑒  favors single-agent systems 

● Magnitude indicates confidence in the decision. 

 

4.4.1. Parameter Tuning Guidelines  

Determining appropriate weightings is critical for 

effective application of the framework. The paper 

recommends the following approach for parameter tuning: 

 

Domain-Specific Baseline 

Begin with baseline weights derived from similar systems 

in the same domain: 

● Information Processing Systems: TCI (0.25), TDS (0.20), 

KDD (0.15), COR (0.15), RUE (0.10), EDC (0.05), IDQ 

(0.10) [Sum: 1.0] 

● Real-time Control Systems: TCI (0.15), TDS (0.15), 

KDD (0.10), COR (0.25), RUE (0.15), EDC (0.10), IDQ 

(0.10) [Sum: 1.0] 

● Decision Support Systems: TCI (0.20), TDS (0.15), KDD 

(0.20), COR (0.10), RUE (0.05), EDC (0.15), IDQ (0.15) 

[Sum: 1.0] 

 

Sensitivity Analysis 

Conduct sensitivity analysis by varying each weight by 

±25% and observing the impact on the decision score. This 

identifies which parameters most significantly affect 

outcomes for the specific use case. 

 

For example, using the Financial Fraud Detection case 

and varying the TCI weight by ±25%: 

 

𝐷𝑠𝑐𝑜𝑟𝑒
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

 =  0.25 × 0.82 + 0.20 × 0.78+ . . . =  0.610 

 

𝐷𝑠𝑐𝑜𝑟𝑒
𝑇𝐶𝐼+25%  =  0.31 × 0.82 + 0.14 × 0.78+. . . = 0.638 

 

𝐷𝑠𝑐𝑜𝑟𝑒
𝑇𝐶𝐼−25%  =  0.19 × 0.82 + 0.26 × 0.78+. . . = 0.582 

 

This demonstrates that a ±25% change in the TCI weight 

produces approximately a ±4.6% change in the decision score, 

indicating moderate sensitivity. By performing this analysis 

across all weights, practitioners can identify which metrics 

most significantly influence the architectural recommendation 

for their specific application. 

 

Empirical Calibration 

For systems where both architectures can be prototyped, 

calibrate weights based on actual performance differences. 

This creates a feedback loop for improving parameter 

accuracy. 
 

Expert Adjustment 

Use domain expert input to fine-tune weights based on 

specific factors not captured in the general model. 

Regularization 

Ensure weights sum to 1.0 (in absolute terms) to 

maintain consistency across evaluations. 
 

4.4.2. Boundary Case Analysis  

The decision score may fall within a “neutral zone” (-0.1 

to +0.1) in certain boundary cases, indicating no clear 

advantage for either approach. This paper recommends 

additional criteria for resolving these cases: 

● Development Constraints: Consider team expertise and 

development timeline 

● Future Evolution: Evaluate anticipated changes in 

requirements 

● Risk Tolerance: Single agent typically presents lower 

implementation risk 

● Organizational Factors: Consider organizational 

experience with different architectures 

● Prototype Comparison: When feasible, develop minimal 

prototypes of both approaches 
 

5. Implementation Model  
The proposed decision framework now moves from 

theoretical foundations based on quantitative metrics and 

mathematical formulations to practical implementation. The 

analytical core of the approach depends on metrics, and its 

effective implementation needs a structured process to obtain 

inputs, apply the framework, and analyze the results with real-

world implementations.  
 

This section connects the theoretical concepts of Section 

4 to practical application through an implementation model 

that serves as a guide for practitioners. 
 

The framework implementation model demonstrates how 

decision metrics can be used in practical scenarios. 
 

5.1. Agent Configuration Evaluator  

The Agent Configuration Evaluation Model is based on 

the proposed decision framework, enabling practitioners  to 

perform the following functions: 

1. Input task characteristics and system requirements 

2. Apply appropriate weights to different metrics based on 

domain priorities 

3. Calculate individual and aggregate scores 

4. Visualize the relative contribution of different factors 

5. Generate an evidence-based recommendation with a 

confidence level 
 

5.2. Evaluation Process 

The evaluation process consists of four steps: 

1. Task Analysis: Decomposing the task into subtasks and 

identifying dependencies 

2. Domain Mapping: Determining the knowledge domains 

required and their interrelationships 

3. Constraint Identification: Specifying resource, time, and 

other operational constraints 

4. Requirement Prioritization: Weighting performance 

requirements according to system goals 
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The evaluator applies the metrics to these inputs and 

calculates a decision score, which is then interpreted 

according to predefined thresholds to produce a 

recommendation. 
 

6. Case Studies 
This study validates the proposed framework through 

application to three diverse case studies, demonstrating its 

versatility and effectiveness across domains. 

 

6.1. Financial Fraud Detection System  

6.1.1. Scenario 

A financial institution needs to develop a fraud detection 

system capable of monitoring and identifying suspicious 

transactions across multiple platforms, including credit cards, 

online banking, and wire transfers. 

 

6.1.2. Framework Application: 

● Task Complexity Index: 0.82 (High due to diverse fraud 

patterns) 

● Task Decomposability Score: 0.78 (High, as different 

fraud types can be detected independently) 

● Knowledge Domain Diversity: 0.65 (Requires expertise 

in transaction patterns, user behavior, and network 

analysis) 

● Coordination Overhead Ratio: 0.25 (Moderate 

coordination requirements) 

● Resource Utilization Efficiency: 0.85 (High parallel 

processing potential) 

● Error Distribution Coefficient: 0.72 (Good fault isolation 

potential) 

● Integrated Decision Quality: 0.68 (Strong performance 

indicators) 
 

6.1.3. Decision Score Calculation 

Using the Information Processing Systems weighting 

model [TCI (0.25), TDS (0.20), KDD (0.15), COR (0.15), 

RUE (0.10), EDC (0.05), IDQ (0.10)]: 
 

Dscore = 0.25 × 0.82 + 0.20 × 0.78 + 0.15 × 0.65 − 0.15 × 

0.25 + 0.10 × 0.85 + 0.05 × 0.72 + 0.10 × 0.68 = 0.610 

 

6.1.4. Recommendation 

Multi-agent architecture with specialized agents for 

different fraud types and channels. 

 
6.1.5. Validation 

The implemented multi-agent system achieved a 23% 

higher fraud detection rate and a 15% lower false positive rate 

than the previous single-agent approach. 

 

6.2. Autonomous Drone Navigation  

6.2.1. Scenario 

Development of a navigation system for autonomous 

drones operating in urban environments. 

 

6.2.2. Framework Application: 

● Task Complexity Index: 0.75 (High due to dynamic 

environment) 

● Task Decomposability Score: 0.65 (Perception, planning, 

and control are separable) 

● Knowledge Domain Diversity: 0.70 (Requires expertise 

in computer vision, path planning, and control theory) 

● Coordination Overhead Ratio: 0.40 (High coordination 

needed for real-time operation) 

● Resource Utilization Efficiency: 0.60 (Limited by 

onboard computing resources) 

● Error Distribution Coefficient: 0.58 (Moderate fault 

isolation capabilities) 

● Integrated Decision Quality: 0.72 (Strong real-time 

performance potential) 
 

6.2.3. Decision Score Calculation 

Using the Real-time Control Systems weighting model 

[TCI (0.15), TDS (0.15), KDD (0.10), COR (0.25), RUE 

(0.15), EDC (0.10), IDQ (0.10)]: 

Dscore = 0.15 × 0.75 + 0.15 × 0.65 + 0.10 × 0.70 − 0.25 × 0.40 

+ 0.15 × 0.60 + 0.10 × 0.58 + 0.10 × 0.72 = 0.401  

6.2.4. Recommendation 

Multi-agent architecture with careful attention to 

coordination efficiency. 

6.2.5. Validation 

The multi-agent system demonstrated a 30% faster 

obstacle avoidance response and improved battery efficiency 

by 18% compared to a monolithic approach. Battery 

efficiency was measured as the total distance traveled per unit 

charge under standardized flight pattern tests, with all 

hardware components and environmental conditions held 

constant across implementations. 
 

6.3. Content Recommendation System  

6.3.1. Scenario 

A streaming service needs to develop a personalized 

content recommendation system. 
 

6.3.2. Framework Application 

● Task Complexity Index: 0.60 (Moderate complexity) 

● Task Decomposability Score: 0.45 (Significant 

interdependencies between user modeling and 

recommendation) 

● Knowledge Domain Diversity: 0.30 (Primarily requires 

recommendation algorithms and user modeling) 

● Coordination Overhead Ratio: 0.35 (Significant overhead 

for preference consistency) 

● Resource Utilization Efficiency: 0.75 (Good 

parallelization potential for different users) 

● Error Distribution Coefficient: 0.48 (Limited fault 

isolation capability) 

● Integrated Decision Quality: 0.64 (Moderate performance 

benefits) 
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6.3.3. Decision Score Calculation 

Using the Decision Support Systems weighting model 

[TCI (0.20), TDS (0.15), KDD (0.20), COR (0.10), RUE 

(0.05), EDC (0.15), IDQ (0.15)]: 

Dscore = 0.20 × 0.60 + 0.15 × 0.45 + 0.20 × 0.30 − 0.10 × 

0.35 + 0.05 × 0.75 + 0.15 × 0.48 + 0.15 × 0.64 = 0.418  

6.3.4. Recommendation 

Multi-agent architecture with attention to coordination 

overhead management. The positive D-score (0.418) indicates 

a preference for a multi-agent approach despite moderate 

coordination overhead, particularly due to the good 

parallelization potential across different user profiles. 

6.3.5. Validation  

The implemented multi-agent system achieved 22% 

higher recommendation diversity and 18% better 

personalization metrics compared to a single-agent approach, 

though with 15% higher infrastructure costs that were justified 

by the improved user engagement metrics. 

6.4. Comparative Metric Contribution Analysis  

To better understand the impact of individual metrics on 

the final decision outcome, this paper analyzed their relative 

contributions to the D-score calculation across this paper’s 

case studies (Table 3, Figure 3). 

This analysis reveals distinct patterns across application 

domains. In the Financial Fraud Detection System, Task 

Complexity Index (TCI) and Task Decomposability Score 

(TDS) are the dominant contributors, accounting for 59% of 

the positive D-score components.  

 

In contrast, the Content Recommendation System shows 

more balanced contributions from performance-related 

metrics (EDC and IDQ), collectively accounting for 40% of 

positive components. The Autonomous Drone Navigation 

case demonstrates a particularly strong negative contribution 

from the Coordination Overhead Ratio (COR),  which is offset 

by the combination of other factors, resulting in a moderately 

positive D-score. 

 

6.5. Cross-Domain Performance Analysis  

To evaluate the generalizability of this framework, this 

paper analyzed its predictive accuracy across different 

application domains (Table 4). 

 

Beyond individual case studies, this paper conducted a 

broader empirical validation of this framework across 50 

diverse AI systems, comparing the framework’s 

recommendations against actual implementation outcomes. 

 

7. Empirical Validation 
Beyond individual case studies, this paper conducted a 

broader empirical validation of this framework across 50 

diverse AI use cases, comparing the framework’s 

recommendations against actual implementation outcomes.
 

 

7.1. Methodology  
Table 3. Breakdown of metric contributions to the final decision score across case studies, showing how different metrics influence 

architecture recommendations. Positive values support multi-agent architectures, while negative values (COR) favor single-agent 

approaches 

Case Study 
Metric Contribution to D-score Total D-

Score TCI TDS KDD COR RUE EDC IDQ 

Financial Fraud +0.205 +0.156 +0.098 -0.038 +0.085 +0.036 +0.068 +0.610 

Autonomous Drone +0.113 +0.098 +0.070 -0.100 +0.090 +0.058 +0.072 +0.401 

Content Recommendation +0.120 +0.068 +0.060 -0.035 +0.038 +0.071 +0.096 +0.418 
 

 
Fig. 3 Comparison of framework metrics (bars) and resulting D-Scores (black line) across three case studies. All systems received multi-agent 

recommendations with D-Scores of 0.610 (Financial Fraud), 0.401 (Autonomous Drone), and 0.418 (Content Recommendation) 
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This paper designed a comprehensive validation protocol 

to evaluate the framework’s predictive accuracy and practical 

utility rigorously. 
 

7.1.1. System Selection Criteria  

This paper selected 50 use cases for validation using 

stratified sampling across the following dimensions: 

Application Domain 

● Information processing systems (n=15) 

● Real-time control systems (n=12) 

● Decision support systems (n=13) 

● Data analysis systems (n=10)

Table 4. Framework predictive accuracy and average performance differential (between recommended and non-recommended 

architectures) across application domains. The framework demonstrated robust performance across all tested domains, with the 

highest accuracy in information processing systems.  

Domain Systems Accuracy Avg. Perf. Differential 

Information Processing 15 87% 28% 

Real-time Control 12 83% 31% 

Decision Support 13 85% 23% 

Data Analysis 10 80% 19% 

Task Complexity 

● Low complexity (TCI < 0.4, n=10) 

● Medium complexity (0.4 ≤ TCI < 0.7, n=20) 

● High complexity (TCI ≥ 0.7, n=20) 

 

System Maturity 

● New development (n=30) 

● Existing system modernization (n=20) 

 

Resource Context 

● Resource-constrained environments (n=15) 

● Standard environments (n=20) 

● Resource-rich environments (n=15) 

This stratification ensured that the framework was tested 

across diverse scenarios and mitigated selection bias. 

  

The sample size of 50 use cases was determined through 

statistical power analysis to ensure sufficient representation 

across the four stratification dimensions while maintaining a 

margin of error below ±10. 

7.1.2. Evaluation Protocol  

For each use case implementation, this paper followed a 

standardized protocol: 

Initial Assessment 

Applied this framework to generate a recommendation 

and decision score 

● Calculated all metrics independently by two researchers 

● Resolved discrepancies through consensus 

● Documented confidence intervals for each metric 

 

Dual Implementation 

Implemented both single and multi-agent versions where 

feasible (42 of 50 use case implementations) 

● Used consistent development practices across both 

implementations 

● Allocated equivalent development resources 

● Employed the same base technologies with architectural 

differences isolated 

● For the remaining 8 systems where dual implementation 

was impractical due to resource constraints or technical 

limitations, this paper conducted a detailed theoretical 

analysis based on system specifications. 

 

Theoretical Analysis Method 

For the 8 systems where dual implementation was 

impractical, this paper employed a three-step analytical 

process: (1) system specification decomposition to identify 

key architectural interaction points, (2) computational 

complexity modeling to estimate resource requirements and 

execution patterns using big-O analysis and profiling of 

component operations, and (3) comparative analysis against 

the closest matching implemented systems from this database 

of 42 dual-implemented systems. This theoretical approach 

incorporated structural equation modeling with path 

coefficients derived from empirically validated relationships 

between architectural patterns and performance outcomes. 

The resulting predictions demonstrated an estimated error 

margin of ±12%, validated through post-hoc analysis of 

implementation outcomes where available (5 of 8 cases). For 

the remaining 3 cases, this paper’s confidence intervals were 

correspondingly wider (±18) 
 

Performance Measurement 

Collected data across key dimensions: 

● Functional metrics: accuracy, correctness, completeness 

● Efficiency metrics: response time, throughput, resource 

utilization 

● Maintenance metrics: code complexity, change impact, 

debug time 

● Operational metrics: reliability, recovery time, fault 

tolerance 
 

Comparative Analysis 

● Calculated performance ratio between architectures 

● Determined “superior” architecture based on weighted 

performance criteria 
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● Compared framework recommendation against empirical 

performance 

● Analyzed discrepancies to identify framework 

improvement opportunities 

 

Superior Architecture Definition 

For this study, “superior architecture” is defined as the 

implementation that achieved higher composite performance 

scores across four equally weighted dimensions: (1) functional 

correctness and completeness, (2) computational efficiency, 

(3) operational reliability, and (4) development/maintenance 

complexity. This composite score was calculated using 

normalized metrics from direct measurements and controlled 

experiments, enabling objective comparison across diverse 

application domains. 

 

Performance Differential Calculation 

Calculation has been done on the performance differential 

between architectural approaches using a normalized 

composite score: 

 

    𝛥𝑃 =  
1

4
∑4

𝑖=1 𝜔𝑖 .
𝑃𝑖,𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑  − 𝑃𝑖,𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒

𝑃𝑖,𝑚𝑎𝑥
        (9) 

 

Where 𝑃𝑖,𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑  and 𝑃𝑖,𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒  Represent raw 

performance metrics for the recommended and alternative 

architectures, respectively, 𝑃𝑖,𝑚𝑎𝑥   Is the maximum possible 

value for that metric (used for normalization), and 𝜔𝑖 are 

equal weights (0.25) for each of the four performance 

dimensions. This normalization approach enabled consistent 

comparison across diverse application domains with different 

raw performance scales. 
 

7.2. Results  

This framework achieved an overall accuracy rate of 84% 

in predicting the superior architecture based on performance 

outcomes. Key findings include: 

● Systems with high task complexity (TCI > 0.75) showed 

an average 27% performance improvement when using 

the recommended multi-agent architecture 

● Systems with low decomposability (TDS < 0.4) 

performed an average of 32% better with single-agent 

architectures 

● The framework’s recommendation strength (magnitude 

of decision score) correlated with the performance gap 

between architectures (r = 0.72) 

● In cases where the framework gave a neutral 

recommendation (-0.1 < score < 0.1), performance 

differences between architectures were minimal (< 10%) 

Analysis of the 16% of cases where framework 

predictions did not align with optimal implementations 

revealed three primary patterns: 

1. Implementation Quality Variance: In 7% of cases, 

exceptionally high-quality implementation of the less-

favored architecture outperformed a standard 

implementation of the recommended architecture, 

suggesting that implementation expertise can 

occasionally overcome architectural disadvantages. In 

these cases, this paper quantitatively measured an average 

of 23 

2. Emergent Complexity: In 5% of cases, unforeseen 

interaction effects emerged during runtime that were not 

captured in the static framework metrics, particularly in 

systems with highly dynamic environments or user 

patterns. 

3. Domain-Specific Factors: The remaining 4% of 

misalignments occurred in specialized domains with 

unusual constraints (e.g., ultra-low-power embedded 

systems, highly regulated environments) where domain-

specific factors outweighed general architectural 

principles. 

These misalignments highlight opportunities for 

framework refinement, particularly in accounting for 

implementation quality indicators and incorporating domain-

specific extensions for specialized application areas. This 

paper also throws insight into the strength of correct 

predictions (84% of cases) to understand the practical 

significance of architectural choice. The analysis revealed a 

strong correlation (Pearson’s r = 0.72, 95% CI [0.65, 0.78], p 

< 0.001) between the magnitude of the D-score and the 

performance differential between architectures, as shown in 

Table 5: 

This graduated relationship between decision score 

magnitude, and performance impact validates the 

framework’s utility for binary architecture selection and 

assessing the potential return on investment when choosing 

between architectural approaches. These results validate the 

framework’s effectiveness in selecting architecture across 

diverse domains and requirements. 

8. Discussions & Limitations 
8.1. Strengths of the Framework 

The proposed framework offers several significant 

advantages: 
 

8.1.1. Objectivity 

By quantifying the decision process, the framework 

reduces subjective bias in architecture selection 
 

8.1.2. Comprehensiveness 

The metrics address multiple dimensions of the problem 

space, capturing nuanced factors 
 

8.1.3. Adaptability 

Domain-specific weighting enables customization to 

different application areas 
 

8.1.4. Evolvability 

New metrics can be incorporated as agent technologies 

advance 

https://docs.google.com/document/d/1M7nKSsemCOSXfu8HZ6EICq5b3zQys5Sk/edit#bookmark=id.8nva82p0zgwt
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Table 5. Framework relationship between D-score magnitude and observed performance differential between single and multi-agent 

implementations 

D-Score Range 
% of Correct Predictions 

(n=42) 

Avg. Performance 

Differential 

> 0.4 32% 35% 

0.2 - 0.4 29% 18% 

0.1 - 0.2 15% 12% 

< 0.1 8% 7% 

8.2. Limitations and Challenges  

This paper acknowledges several limitations that 

represent opportunities for future work: 

1. Parameter Sensitivity: The framework’s 

recommendations can be sensitive to weight assignments 

and require careful calibration 

2. Dynamic Factors: The current framework evaluates the 

system during the design phase but does not consider 

changing requirements. 

3. Emerging Architectures: The binary distinction between 

single and multi-agent systems may not fully capture 

hybrid approaches 

 

8.2.1. Edge Cases 

The framework may produce inconclusive results for 

certain types of problems that sit at the interface between 

paradigms 

 

8.3. Practical Considerations and Implementation 

Challenges  

Practitioners applying the framework should consider 

several factors beyond the quantitative recommendation and 

be prepared to address common implementation challenges: 

 

8.3.1. Contextual Factors 

Team Expertise 

The development team’s familiarity with different 

architectural approaches. 

1. Organization Constraints: Existing infrastructure and 

development practices 

2. Scalability: Anticipated growth in system scope and scale 

3. Integration Requirements: Interaction with existing 

systems and services 

 

8.3.2. Implementation Challenges  

Implementing the recommended architecture presents 

several challenges that should be taken into consideration: 

1. Agent Interface Design: 

● Challenge: Defining clean interfaces between agents 

in multi-agent systems while maintaining efficiency 

● Mitigation: Use standardized communication 

protocols and apply interface-first design principles 

● Relevance: Critical for systems with high TDS scores 

but moderate COR values 

2. State Management Complexity: 

● Challenge: Maintaining consistent state across agents 

in distributed systems 

● Mitigation: Implement consensus algorithms and 

centralized state repositories when appropriate 

● Impact: Can significantly increase actual COR 

compared to theoretical estimates 

3. Testing and Debugging Overhead: 

● Challenge: Multi-agent systems introduce complex 

interaction patterns that complicate testing 

● Mitigation: Develop specialized testing frameworks 

that simulate agent interactions and monitor message 

passing 

● Cost Factor: Can increase development time by 15-

40% depending on system complexity 

4. Migration Pathways: 

● Challenge: Transitioning from existing systems to 

new architectural patterns 

● Mitigation: Consider incremental migration 

strategies and temporary bridge components 

● Relevance: Particularly important for systems with 

high operational criticality 

5. Performance Optimization Conflicts: 

● Challenge: Local optimizations by individual agents 

may lead to globally suboptimal behavior 

● Mitigation: Implement global coordination 

mechanisms and incentive alignment 

● Tradeoff: It may increase coordination overhead but 

improve overall system performance 
 

9. Conclusion & Future Work 
9.1. Contributions  

 The research presents a detailed approach to determining 

between single-agent and multi-agent designs for selecting AI 

system architecture. This paper’s contributions include: 

1. The research provides a systematic approach  to 

determine which agent architecture suits particular needs. 

2. A set of quantitative metrics that formalize previously 

implicit decision factors 

3. An implementation model for applying the framework to 

real-world scenarios 

4. Empirical validation across diverse application domains 

 The framework addresses a significant AI system design 

methodology gap by providing practitioners with evidence-

based and data-driven guidance for making essential 

architectural choices. 

9.2. Future Research Directions  

 This research sparks multiple promising directions for 

future work and investigation: 



Jay Prakash Thakur & Ananya Ghosh Chowdhury / IJCTT, 73(5), 27-40, 2025 

 

39 

1. Hybrid Architecture Evaluation: Extending the 

framework to evaluate hybrid architectures that combine 

elements of single and multi-agent approaches 

2. Dynamic Adaptation: Developing mechanisms for 

transitioning between architectural approaches as system 

requirements evolve 

3. Domain-Specific Calibration: Refining metric weights 

and thresholds for specific use cases and application 

domains 

4. Implementation Quality Integration: Incorporating code 

quality metrics into the framework to account for 

implementation expertise variations that affected 7% of 

this paper’s validation cases. This could include 

formalized assessments of: 

● Code complexity metrics (cyclomatic complexity, 

cognitive complexity) 

● Implementation maturity indicators (test coverage, 

documentation quality) 

● Team expertise factors (experience with specific 

architectural patterns) 

● A compensatory scaling factor that adjusts D-score 

thresholds based on implementation capability 

assessments 

5. Automated Architecture Selection: The framework 

should be integrated into AI-assisted design tools to 

provide automatic architecture recommendations 

6. Extended Validation: The framework should be applied 

to emerging application areas such as edge intelligence 

and human-AI collaboration 

 This work formalizes agent architecture selection to 

produce systematic and effective AI system design, which 

leads to better outcomes in various application domains.
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